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Real-world decisions are often open ended, with goals, choice op-
tions, or evaluation criteria conceived by decision-makers them-
selves. Critically, the quality of decisions may heavily rely on the
generation of options, as failure to generate promising options lim-
its, or even eliminates, the opportunity for choosing them. This core
aspect of problem structuring, however, is largely absent from clas-
sical models of decision-making, thereby restricting their predictive
scope. Here, we take a step toward addressing this issue by devel-
oping a neurally inspired cognitive model of a class of ill-structured
decisions in which choice options must be self-generated. Specifi-
cally, using a model in which semantic memory retrieval is assumed
to constrain the set of options available during valuation, we gen-
erate highly accurate out-of-sample predictions of choices across
multiple categories of goods. Our model significantly and substan-
tially outperforms models that only account for valuation or retrieval
in isolation or those that make alternative mechanistic assumptions
regarding their interaction. Furthermore, using neuroimaging, we
confirm our core assumption regarding the engagement of, and in-
teraction between, semantic memory retrieval and valuation pro-
cesses. Together, these results provide a neurally grounded and
mechanistic account of decisions with self-generated options, rep-
resenting a step toward unraveling cognitive mechanisms underly-
ing adaptive decision-making in the real world.
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Some decisions, such as choosing an entree at a restaurant,
come with a menu of well-defined options and associated

information that aid in their evaluation and selection. For many
other decisions, such as how to spend one’s evening or which
career path to choose, the space of potential options is less well-
defined and may need to be generated by the decision-maker
themself. More generally, option generation is part of a larger
set of processes critical for a class of decisions, often referred to as
“open-ended” or “ill-structured” problems (1–6), that are charac-
terized by a lack of well-specified goals, alternatives, or evaluation
criteria, among others.
Despite their ubiquity, however, such decisions pose consider-

able difficulties for standard models of decision-making, as pro-
cesses generating these features are typically considered outside
the scope of traditional decision analysis (3–11). To address this
ambiguity, researchers have turned to one of two broad strategies.
The first, and arguably the most frequent one employed, involves
imposing strong auxiliary assumptions about the option set (12).
For example, if one is choosing a breakfast cereal, the option set
comprises everything on the market. This strategy has the benefit
of simplicity and is consistent with the invocation of “full ratio-
nality” in neoclassical economic theory.
In contrast, the second strategy attempts to relax these assump-

tions by emphasizing the “constructed” nature of decisions (13).
This approach encompasses processes that can occur prior to
valuation of choice options, such as the generation (14–16) and
consideration (17–19) of said options, as well as those that can

occur in parallel, including heuristics (20, 21) that make use of
“fast and frugal” rules that do not require explicit weighing of the
relative costs and benefits of each option. However, despite im-
portant advances in our understanding of mechanisms underlying
factors that influence option generation, much less attention
has been paid to connecting these accounts with formal models
capable of specifying the contents of the “internal menu” (10–12,
22–25). As a result, it remains challenging to make quantitative
predictions about the effects of option generation on choice.
Here, we develop a neurally grounded model capable of making

highly accurate predictions of people’s decisions for a class of ill-
structured environments in which options must be retrieved from
memory. Specifically, drawing on Marr’s three levels of analysis
(26, 27), we replace the strong auxiliary assumptions about con-
tents of the option set in standard choice models with a quanti-
tative model capturing “predecision processes,” thereby linking
formal models of option generation and choice processes. Across a
set of experiments that evaluate decisions incorporating real-world
goods, we show that, at Marr’s computational/conceptual level,
these decisions rely critically upon the interaction of processes
involved in valuation and the retrieval of semantic knowledge, the
aspect of human declarative memory that deals with general,
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culturally shared knowledge of meanings, facts, ideas, and con-
cepts accumulated over the lifetime (28, 29). In particular, we draw
upon the rich literature on memory factors in consumer decision-
making (24, 25, 30), where such choices are conceptualized as the
products of a multistage process (14, 16). At the algorithmic level,
we build upon two well-established principles from the cognitive
science and neuroscientific literatures on memory retrieval and
valuation. First, retrieval of semantic knowledge is a probabilistic
process governed by the associative principle (28, 31, 32). Second,
given a set of options, choice is governed by subjective preferences
over the options, commonly referred to as utility or value (7). At
the implementation level, we demonstrate that these memory and
valuation processes are indeed subserved by separable neuro-
cognitive systems, which can be probed and characterized inde-
pendently (29, 33).
By connecting these literatures, which have developed largely

independently, the resulting framework makes a number of test-
able predictions. First, output resulting from the interaction of
retrieval and valuation processes can be predicted using outputs
from each component process. To test this idea, we use behavioral
responses from two distinct tasks capturing valuation and semantic
retrieval processes, respectively, to predict behavior in a third task
that is hypothesized to require both processes. Furthermore, the
framework predicts two reasons that an option was not chosen: 1)
the option was not preferred and 2) it was not successfully re-
trieved. Across a diverse array of real-world goods, we show that
our computational model makes highly precise and accurate
predictions of the likelihood that each option was chosen by in-
corporating the extent to which each option benefits from a failure
to retrieve some other option or is passed over due to successful
retrieval of another option. Finally, we present functional neuro-
imaging evidence that confirms our model’s fundamental predic-
tions about the separable but interactive nature of the valuation
and retrieval systems that underlie these decisions.

Results
Choice Behavior without an Explicit Menu. To investigate how agents
solve the computational problem of maximizing rewards when
options are not explicitly provided, we begin by comparing choices
from an “external menu condition” (EMC), where an external
menu is present, with those in an “internal menu condition”
(IMC), where it is not (Fig. 1A). Whereas the former enjoys
widespread usage, the latter has received comparatively little
attention (10–12, 24). Specifically, we used a between-subjects
design in which participants (N = 2,811) were asked to make
either EMC or IMC choices within six categories of real-world
goods—fruits, fast food chains, running shoe brands, vegetables,
fish for dinner, and salad dressings. Choices involving fast food
chains and running shoes were incentivized, whereas the other
categories were unincentivized (Materials and Methods).
Under standard economic models without memory constraints,

all options available in EMC are also available in IMC. There-
fore, systematic changes in choice behavior between EMC and
IMC must be driven by participants whose favorite items are not
included in the EMC menu, requiring them to “satisfice” by
choosing other in-menu items. Consequently, options available
in the EMC condition should have either equal or greater choice
share than in IMC. In contrast to this constrained menu account,
a constrained retrieval account predicts that highly (less) accessi-
ble items should benefit (suffer) under IMC due to the inability to
retrieve less accessible options, irrespective of preference. This
hypothesis implies that choice frequency for some items, specifi-
cally more accessible ones, may be less, rather than greater, in
EMC relative to IMC. Our results strongly support the influence
of constrained retrieval on IMC choice, above and beyond value.
Comparing choices between EMC and IMC, options chosen less
in EMC were in general highly accessible, including McDonald’s,
apple, salmon, and others. (Fig. 1B and SI Appendix, Fig. S1).

To better assess this impression, we independently measured
mnemonic accessibility in a third group of subjects (N = 256)
using the Semantic Fluency task (29, 31), a widely used task of
memory search in which participants retrieve as many items be-
longing to a particular category as they can during a limited time
period (Fig. 1 C and D and SI Appendix, Figs. S2 and S3). Indeed,
across all six categories, items with choice shares that declined in
the EMC condition exhibited higher accessibility, as measured by
Semantic Fluency, compared to those with increased choice shares
(Fig. 1E and SI Appendix, Fig. S4; mixed effects p< 10−6).

Predicting Choices with Self-Generated Options.Although the above
results are consistent with a role for semantic retrieval processes
in option generation and choice, they provide limited mechanistic
insights and predictive power. To provide an algorithmic account
capable of capturing the hypothesized interaction between mem-
ory retrieval and valuation processes, we developed a retrieval-
constrained valuation (RCV) model in which valuation operates
on an “internal menu” generated probabilistically via semantic
retrieval. This model draws information about memory retrieval
and valuation from the Semantic Fluency and the EMC samples,
respectively, and its out-of-sample predictive power can be tested
against the independent IMC sample (Fig. 2A).
More formally, we assume choice probability in IMC is

governed by

PIMC(i)∝  ∑
m

  PRetrieval   (m) ×   PChoice   (i|m),

where PRetrieval   (m) is the probability of generating a specific
choice set m and PChoice   (i|m) is the probability of selecting op-
tion i from choice set m (Fig. 2B).
To capture the output of these component processes, we fol-

lowed well-established models of semantic retrieval and valua-
tion processes using associative network and multinomial logit
models, respectively. First, because no a priori method exists to
calibrate the associative network, we drew on popular instanti-
ations to estimate the network empirically, where fluency data
are assumed to be generated by a censored random walk, spe-
cifically a first-order Markov process (Fig. 3A) (31, 34). A split-
half cross validation showed the trained associated network was
able to provide highly accurate predictions of the hold-out flu-
ency responses with respect to both order of retrieval and overall
retrieval probability for all goods across all categories (R2 be-
tween 0.90 and 0.96) (Fig. 3B and SI Appendix, Fig. S5). Next,
using a similar approach, we trained a multinomial logit choice
model on half of the EMC choices (35), followed by testing on
the remaining half (Fig. 3C). As with semantic retrieval, the
valuation model calibrated on EMC data provides highly accu-
rate out-of-sample predictions of all goods across all categories
(R2 between 0.89 and 0.98; Fig. 3D and SI Appendix, Fig. S6). In
addition, while some degree of correlation exists between the
memory accessibility and value associated with real world goods,
the magnitude of this correlation (ranging from 0.42 to 0.84)
demonstrates substantial variability across categories, thereby
making it possible to characterize their separable effects and
interaction (SI Appendix, Fig. S7).
Individually, these two components can also be seen as nested

models within our RCV model, with the valuation-only model
corresponding to valuation under perfect retrieval, and the retrieval-
only model corresponding to constrained retrieval but uniform value
for all options (Fig. 2A). Using either of them to predict IMC,
however, showed only limited success, as did a “take-the-first”
(TTF) model assuming participants chose the first item retrieved
(Fig. 4 A and B and SI Appendix, Fig. S8A). In contrast, the RCV
model combining memory retrieval and valuation showed a striking
improvement in out-of-sample performance over the two nested
models. First, it was able to accurately predict the entire response
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profile across all categories (mean R2 of 0.94, range 0.87 to 0.97)
despite variations in memory and preference structures between
categories (Fig. 4 C and D, Table 1, and SI Appendix, Figs. S8–S10).
Second, the regression lines all fell near the identity line, such that
coefficients were statistically indistinguishable from 1 despite tight
confidence intervals, suggesting that the RCV model is able to
predict absolute, in addition to relative, choice shares (Fig. 4C and
SI Appendix, Fig. S9 and Table S4). Moreover, this improvement

remained robust to excluding the most accessible item in a category
and to measuring the prediction accuracy using (nonparametric)
Spearman correlation coefficients (SI Appendix, Table S5).
To further investigate the validity of some of the key modeling

assumptions, we tested two variants of the RCV model (SI Ap-
pendix, SI Methods). First, we estimated a truncated RCV model
that included a parameter that sets an upper limit on the size of
the internal menu, thereby permitting us to evaluate the effects
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Fig. 1. Task Paradigms. (A) Two decision conditions, EMC and IMC, are distinguished by the presence or absence, respectively, of an explicit menu of choice
options. (B) Consistent with the role of constrained memory retrieval on choices in IMC, (Left) deviations between decisions in EMC and IMC are common, as
reflected in the off-diagonal items. (Right) Items chosen more often in IMC than in EMC (negative EMC − IMC values) are represented by orange bars, with
positive EMC − IMC differences in blue. Statistical significance of item-wise choice share differences was determined by permutation tests (Bonferroni cor-
rected). *P < 0.05; **P < 0.01; ***P < 0.001. (C) To quantify the mnemonic accessibility of different items independently of choice, a third group of par-
ticipants completed a semantic fluency task in which they listed as many items from memory as possible. (D) Cumulative recall probability (y axis) of different
items as a function of recall position (x-axis). (E) Items chosen more often in IMC than EMC are significantly more likely to be recalled in the fluency task than
under the reverse case (P < 0.001 across categories, mixed-effects model). Error bars indicate the SEM for each group, collapsing across categories.
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m, P(m), and the probability of choosing item i from m, P(i|m).
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of progressively shorter internally generated menus on IMC
choices. Second, we estimated an order-weighted RCV model
relaxing the assumption that the choice component of the model
is insensitive to the order of retrieval. In this latter model, an
added parameter allowed an option to be either more or less
likely to be chosen if it was retrieved earlier after controlling for
accessibility and value. (For both of these models, when the new
parameters were set to specific values, they recapitulated the
original RCV model.) By examining the prediction performance
of these two variants of the RCV model as a function of their
additional respective parameters, we found minimal systematic
effects captured by these parameters, despite some hints in certain
categories for a limited menu or for a slight choice bias favoring
options retrieved earlier (SI Appendix, Figs. S11 and S12). Unlike
the consistent performance of the original RCV model in all
categories, however, the limited generalizability of these variants
leaves their related mechanistic insights regarding option gener-
ation and subsequent choices unclear.
We next evaluated the importance of our assumption regarding

the interactive nature of memory and valuation processes by
considering a type of mixture model that additively combined the
two (Materials and Methods). Importantly, although still containing
both processes, an additive mixture is conceptually distinct from
the RCV model as, rather than generating options, retrieval can
be seen to operate as an independent driver of choice behavior. In
this potential explanation for the differences between EMC and
IMC choices, the retrieval and the valuation processes (the latter
assuming that all options are available) compete for behavioral

control during IMC choices. Therefore, options with high acces-
sibility, either in a “top-of-mind” or overall sense, may gain choice
share in IMC choices through this alternative competitive, rather
than interactive, mechanism between the two processes. Com-
pared to the mixture models, the RCV model again exhibited sig-
nificantly higher out-of-sample IMC prediction accuracy (Table 1
and SI Appendix, Fig. S13), highlighting the advantage afforded by a
model based on well-validated cognitive processes and plausible
assumptions about the way they interact.

Separable Engagement of Neural Systems Underlying Retrieval and
Valuation. Finally, we sought to confirm the key predictions of this
neurally inspired model at the implementation level—namely, the
differential engagement of brain regions thought to underlie
cognitive processes, including semantic retrieval and valuation,
corresponding to the two components of the RCV model. This
hypothesis predicts the critical involvement of medial brain re-
gions, including the ventromedial prefrontal cortex (vmPFC),
ventral striatum, and posterior cingulate cortex (PCC), in valua-
tion processing (33) but also the role of a separate set of regions,
centered on the lateral prefrontal cortex and the cingulo-opercular
network, in semantic retrieval (SI Appendix, Fig. S14A) (29).
Moreover, our model predicts that connectivity with regions im-
portant for valuation should strongly reflect the differential de-
mands that specific decision types place on semantic retrieval.
To address these hypotheses, we conducted functional MRI

scans of a separate group of subjects (N = 28) while they per-
formed the IMC, EMC, and semantic fluency tasks (Materials and
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Methods and SI Appendix, Fig. S14B). Consistent with our pre-
dictions of separable but interacting systems, IMC showed greater
engagement of valuation systems as compared to fluency (vmPFC
and PCC P < 0.05, cluster-level family-wise error [FWE] cor-
rected; SI Appendix, Table S7), and greater engagement of se-
mantic retrieval systems when compared to EMC (inferior frontal
gyrus P < 0.05 corrected; SI Appendix, Table S8 and Fig. 5A; see SI
Appendix, Table S9 for results from the reverse contrast). More-
over, vmPFC showed increased functional connectivity with left
anterolateral prefrontal cortex under IMC (IMC > EMC; P < 0.05,
small-volume corrected [SVC]), consistent with the hypothesis of
an increased need for communication between valuation and re-
trieval systems during IMC (Fig. 5B and SI Appendix, Table S11).
In contrast, vmPFC showed increased connectivity with the bi-
lateral fusiform gyrus under EMC (EMC > IMC; P < 0.05, SVC;
Fig. 5B and SI Appendix, Table S11), consistent with increased
visual processing demands during EMC. Together these findings
ground our neurally inspired behavioral model in separable but
interacting valuation and retrieval processes in the brain.

Discussion
Some of the most challenging problems that humans face are
open-ended, characterized by multiple solutions and solution
paths (1–6). Perhaps not surprisingly, this importance has been

particularly recognized in applied disciplines ranging from edu-
cation to artificial intelligence (AI) (3, 36). At the same time,
approaches developed in these disciplines have been criticized
for being too ad hoc for formal analysis (1–6). Newell, for ex-
ample, noted that Polya’s famous work on problem solving and
AI was at once “revered” and “ignored” (1).
Here, we take a modest step toward addressing these long-

standing questions by studying cognitive mechanisms underlying
a basic but common type of open-ended decision (14, 24). At the
computational level, we demonstrate that semantic knowledge
structures valuation problems when options are not provided. In
particular, incorporation of prior knowledge about the manner in
which specific memory systems organize information produces
strikingly accurate predictions, substantially expanding the ex-
planatory and predictive scope of standard models of decision-
making (7, 8, 24, 25). This framework also explains behavioral
observations that are difficult to reconcile with alternative ac-
counts invoking consideration sets or the availability heuristic
(18, 22). Participants, for example, retrieved Adidas nearly as
often as Nike, but only the latter saw a large gain in choice share
moving from EMC to IMC. This example shows how valuation
processes can mask effects of accessibility on choice and that an
additive relationship between accessibility and valuation is not
sufficient to account for IMC choices. Specifically, Adidas did
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Fig. 4. Predicting IMC. (A) Prediction of IMC shares in the Fast Food Chains category using the valuation model calibrated using EMC behavior (out-of-sample
[OOS] R2 = 0.45) and (B) the memory retrieval model calibrated using semantic fluency responses (OOS R2 = 0.81). (C) Fast Food Chains IMC shares were better
predicted by the RCV model capturing interaction of memory and valuation (OOS R2 = 0.96). Vertical error bars in A through C indicate 95% confidence
intervals of the observed IMC shares. Horizontal error bars indicate 95% confidence intervals of the predicted IMC shares obtained through a bootstrap
procedure. (D) Across all categories tested, the retrieval-constrained model demonstrated consistently high accuracy in OOS predictions of IMC behavior and
significantly outperformed both memory-only and valuation-only models. Abbreviations for categories are identical to Fig. 1E.

Table 1. Out-of-sample (OOS) accuracy of IMC choice predictions

Model OOS R2 (mean ± SD) OOS LL (mean ± SD) Comparison with RCV model

Proposed model Retrieval-constrained Valuation (RCV) 0.94 ± 0.04 −1,088 ± 223 —

Single-process models Valuation-only* 0.69 ± 0.18 −1,150 ± 246 P < 0.001
Retrieval-only† 0.53 ± 0.15 −1,225 ± 169 P < 0.001

Take-the-first (TTF) 0.22 ± 1.33 −1,285 ± 342 P < 0.001
Mixture models Valuation + Accessibility 0.67 ± 0.12 −1,158 ± 227 P < 0.001

Valuation + TTF 0.77 ± 0.17 −1,125 ± 225 P < 0.001

Mean and SD across categories are presented for both OOS R2 and Log Likelihood (LL). Higher R2 and less negative LL indicate better prediction perfor-
mance. Comparison with the RCV model is based on OOS R2 and LL, respectively, across categories via permutation test.
*Perfect retrieval of all available options.
†Constrained retrieval, uniform value.
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not see the same degree of gain because 1) it consistently loses to
Nike when both are present in the menu, and 2) Nike is rarely
missing from the internal menu in IMC and never in EMC.
At the algorithmic level, option generation in IMC, instanti-

ated via associative networks for semantic retrieval, both enables
and constrains choice. This modeling approach draws upon and
builds on a number of largely separate streams of research, in-
cluding consumer decision-making (14, 16, 37–39), psychological
models of option generation (15, 32, 40), and decision heuristics
in complex real-world scenarios (20, 21, 41). Despite differences
in many aspects, these works share a common conceptual frame-
work consisting of option generation and their evaluation. At the
same time, this understanding has not been incorporated into a
formal and generative model with the precision necessary to gen-
erate quantitative prediction of choices. To address this gap, we
formalize and enrich this framework by modeling option generation
using computational models of memory search on associative net-
works (31, 34, 42). Moreover, when combined with a classic value-
based choice model (35), we demonstrate that such models can
predict the entire distribution of responses, beyond the most com-
monly chosen or most accessible items (20).
Apart from its accuracy in choice prediction, another major

advantage of a formal, mechanistic model is that it offers a par-
simonious framework to explain and unify existing findings as well
as to generate testable hypotheses. It can account for the effects of
priming and category structures on open-ended decisions (14, 38)
through changes in the associative network and their downstream
effects on both the composition of the internal menus and on
subsequent choices. The model also formalizes how advertising
may affect choices separately through consideration and prefer-
ence (37), and their differential effects in decisions with pre-
defined versus self-generated options (39).
By formalizing previous conjectures about the contribution of

memory processes—specifically, semantic knowledge—to option
generation (6, 20, 22), we extend insights from previous work
showing the myriad ways in which different memory processes
contribute to decision-making. Past studies have demonstrated
that memory can bias decisions with prior experiences (43, 44);
that it can “fill in” missing attribute information when it is not

immediately available (45); and that spatial cues associated
with specific items can be used to retrieve those items from
visuospatial memory for subsequent value-based decisions (46).
Here, for example, we demonstrate that the model is flexible
enough to accommodate new parameters and/or components,
such as the effects of internal menu size and recall order, that
test hypotheses regarding associative memory mechanisms.
Our approach to option generation therefore contributes to

the past literature emphasizing the “boundedly rational” nature
of human decision-making in general and expands upon those
models that conceptualize decision-making as a multistage pro-
cess in particular (16–19). Models of consideration set forma-
tion, for example, often posit that the likelihood that an item is
“considered” depends on the tradeoff between the expected
benefit and cost of including an additional option (i.e., whether
the utility of an option merits its consideration) (17, 18, 47).
However, because these models typically maintain the assump-
tion that all feasible options are valued, they have difficulty ac-
counting for the frequent and systematic failures to retrieve
highly valued options that we observe in our data. Option gen-
eration from memory retrieval therefore may be seen as com-
plementary to consideration set formation based on value, as it is
possible that the recall set captured by our model is subject to
further pruning, resulting in a smaller consideration set.
The RCV model can also be seen as a generalization of models

applying decision heuristics to open-ended decisions. In the classic
availability heuristic model (22) as well as its more recent exten-
sions (48), information that can be recalled more readily is posited
to be more important than information that cannot. More spe-
cifically, the “take-the-first” heuristic has been shown to be ef-
fective in a variety of situations, especially those involving an
ambiguous option space (20, 21, 41). Extending this notion, re-
cent work has proposed an adaptive sampling account in which
option generation is biased toward higher value options (49) or
in which preferences themselves may be influenced by the order
in which supporting evidence is retrieved (50). Our study con-
tributes to this line of inquiry by accommodating different levels
of correlation between the value of an option and the probability
or order that it will be generated. This flexibility allows the RCV
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Fig. 5. Neural Substrates of IMC. (A) Compared to semantic fluency, IMC elicited greater activity in a priori valuation regions (vmPFC: ventromedial pre-
frontal cortex, PCC: posterior cingulate). Compared to EMC, IMC elicited greater activity in a priori semantic retrieval regions (aPFC: anterior prefrontal cortex;
IFG, inferior frontal gyrus; aINS, anterior insula; dACC, dorsal anterior cingulate cortex; dmPFC, dorsomedial prefrontal cortex). (B) Functional connectivity
between valuation (vmPFC) and retrieval (aPFC) regions was significantly stronger in IMC, while in EMC, vmPFC was more strongly connected with fusiform
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model to account for choices in categories for which the TTF
heuristic is not a good predictor of choice. Importantly, the exact
decision strategy used in an open-ended decision likely depends
on the context. In some situations in the real world, the TTF
model may better explain and predict behavior, such as those
involving time pressure or context-specific constraints that could
shape retrieval to eliminate unqualified or bad options. The TTF
heuristic and the RCV model may represent complementary
reflexive and deliberative strategies, respectively, for open-ended
decisions. Although there is no clear indication in our data (SI
Appendix, Table S6), both strategies may be employed by dif-
ferent individuals or jointly govern open-ended decisions in dif-
ferent settings akin to a dual-process model.
The focus on out-of-sample predictions and the inclusion of

multiple categories in our study offers a valuable way to examine
the generalizability of the proposed RCV model. Importantly, no
free parameter is being fit on the IMC choice data when the two
components are combined to generate the predictions for IMC
choice probabilities. Despite this exceptionally stringent crite-
rion, the RCV model predicts IMC choices with consistently high
accuracy across all categories tested, suggesting that the model
represents core cognitive mechanisms that generalize regardless
of idiosyncrasies in memory and preference structures. By con-
trast, additional parameters in variants of the RCVmodel that aim
to capture the maximal size of the internal menu or the effect of
recall order do not generalize well from one category to another
and should be seen as a descriptive component of these extended
models. Future studies are necessary to investigate the determi-
nants of these variables of interest—for example, how the size and
the composition of the internal menu may be affected by internal
(e.g., working memory capacity, category knowledge, and prefer-
ence structure) and contextual (e.g., environmental memory cues)
factors (51–54), as well as their effects on subsequent choices.
At the implementation level, our neural data, as well as those

from previous findings on option generation, emphasize the con-
tribution of regions important for controlled semantic retrieval to
decision-making (10, 11, 29). Although semantic retrieval can
seem automatic and effortless, this link to neural mechanisms has
potential implications for clinical assessments of decision-making
impairments. For example, given that brain regions identified here
as contributing to option generation are known to be pathologi-
cally disrupted in Alzheimer’s and other dementias (55), evalua-
tions that resemble our EMC condition (i.e., in which available
options are provided) may not fully capture day-to-day decision-
making deficits in such patients (56).
Finally, we emphasize that our model encompasses only a par-

ticular set of open-ended decisions. We do not, for example, ad-
dress how people identify goals or problems that motivate the need
for option generation and decision-making in the first place, how
semantic memory mechanisms might be influenced or “nudged” to
favor retrieval of specific subsets of options (57), or how people
update options in repeated decisions. We also do not consider the
potential tradeoff between the mental efforts of memory retrieval
and the potential benefit of generating additional options (58).
Even what constitutes an “option” remains debated in the option
generation and categorization literatures (10). In our study, moti-
vated by the semantic fluency literature, we restricted our attention
to so-called natural categories (59). However, more abstract notions
of categories and options (32) (e.g., “something red,” or “make
dinner”) may pose difficulties for our model, which assumes that
individuals share a common cultural background (28, 29). In a
similar vein, many open-ended decisions in everyday life involve
options that are not simple concepts or goods but ideas consisting of
creative, complex combinations of concepts tailored to the specific
context (60). This type of decision may recruit additional cognitive
processes and different neural substrates that support them, as is
shown by a recent study demonstrating impaired option generation
in such decisions in patients with vmPFC lesions (61). Similarly, our

study raises questions about the additional influence of encoding
processes and their neural substrates, including the medial temporal
lobe (43, 46), on subsequent option retrieval. Progress on these and
related questions (2–5) is likely to have both theoretical significance
and practical implications.

Materials and Methods
Full methodological details are provided in SI Appendix, SI Methods.

Participants.A total of 3,067 individuals participated across behavioral studies
and 32 in the fMRI study (details are provided in SI Appendix, Table S1). This
research was approved by the Committee for Protection of Human Subjects
at the University of California, Berkeley. Participants provided informed
consent before participation.

Behavioral Tasks.
EMC. In the EMC task, participants were asked to imagine a hypothetical
shopping scenario in which they needed to choose an item to buy in a given
category from a menu of 12 to 14 items (SI Appendix, Table S2). The selection
of items for the menus ensured reasonable coverage of the most commonly
seen and popular items in the categories. There was no time limit on this
task. For participants performing this task for the fast food chains and
running shoe brands, choices were incentivized by entry into a drawing for a
$20 electronic gift card for the brand of their choice. Participants performing
this task for the other categories did not receive any additional incentives.
IMC. In the IMC task, participants were similarly asked to imagine a hypo-
thetical shopping scenario in which they needed to choose an item to buy in a
given category. However, no menu was provided, and participants needed to
type in their response in a text box. There was no time limit for this task.
Similar to the EMC task, participants performing the task for the fast food
chains and running shoes brands made choices incentivized by the chance to
receive a $20 electronic gift card for the brand of their choice, as long as it was
a valid brand in the given category. Participants performing this task for the
other categories did not receive any additional incentives.
Semantic fluency. Participants were asked to name as many examples as
possible for the given category within a time limit (45 s for fast food chains
and brands of running shoes, 60 s for the remaining categories). These re-
sponses were collected as open-ended text responses. Participants were
instructed to input their responses in the order they recalled them, and they
were free to finish responding whenever they felt that they could no longer
recall any more items. No additional incentives based on the number of the
items or their identities were provided. Participants performed this task for
multiple categories in randomized orders (SI Appendix, Table S1).

Computational Modeling.
Associative network model of semantic knowledge retrieval. Following existing
computational modeling studies of semantic fluency, responses in this task
were modeled by a censored probabilistic trajectory on a semantic network,
or field, determined by the semantic relatedness between the items. We
adopted a data-driven approach that defines the transition probabilities
from the pooled empirical transitions in the fluency task (see detailed de-
scriptions in SI Appendix, SI Methods). We validated this model of semantic
knowledge retrieval via split-half cross-validation on the semantic fluency
data sets. In light of our goal of predicting the content of retrieval output,
we focused on how well the model was able to capture both the identity
and the order of responses in the semantic fluency task. Therefore, we
adopted cumulative recall probability (CRP, or “Cumulative Recall %” as
shown in Fig. 1D) for each individual item as the metric for model validation.
Model of valuation in EMC. We used EMC choice data to construct a model of
U(i) that captures the value of item i. Following classic choice models, we
assumed that, given a predefined choice set (i.e., an external menu of op-
tions), the value of item i is transformed to the choice probability of i via a
multinomial logit choice rule. Similar to our modeling of semantic knowl-
edge retrieval, we adopted a split-half approach to first infer U(i) from a
random half of our EMC sample, then test its predictive performance on the
holdout sample.

RCV model. The RCV model is a generative computational model that
produces quantitative predictions of IMC choice probabilities for a com-
prehensive list of items in a given category. It combines the models of se-
mantic knowledge retrieval and of valuation described above and seeks to
capture the cognitive mechanism of internal menu generation through
memory retrieval and value-based choice over recalled items. Following the
law of total probability, the predicted probability of choosing an item i in
IMC is
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PIMC (i)∝ ∑
Mj   ∈M

PRetrieval   (Mj)*  Pchoice(i|Mj),

where PRetrieval   (Mj) is the probability of retrieving a particular internal menu
Mj,M is the set of all possible internal menus consisting of one or more items

from a given category, and Pchoice   (i
⃒⃒
Mj) is the choice probability for item i

given the internal menu Mj. We obtain PRetrieval   (Mj) and Pchoice   (i
⃒⃒
Mj) from

the models of semantic knowledge retrieval and of valuation described
above. Given the lack of an analytical solution for deriving IMC menu
probabilities, we used a Monte Carlo approach with 10,000 simulations to
approximate PIMC (i). It is worth pointing out that, once the semantic re-
trieval and the valuation components are trained using the semantic fluency
and the EMC choice data, there is no free parameter in the RCV model.
Therefore, unlike mixture models below, the RCV model does not need to be
fit with IMC choice data.

Single process models. To characterize the respective contributions of se-
mantic knowledge retrieval and valuation in IMC choices, we further ex-
amined the prediction performances of single process models, in which only
one of these two components is incorporated.

Valuation-only model: This model follows the assumption of standard
models of decision-making that all options are available—namely, there is
no constraint from semantic knowledge on decision-making even in the IMC
choices. In this case, IMC choice probabilities would be governed only by
valuation, which can be inferred from the EMC choice data.

Accessibility-only and TTF models: In contrast with the valuation-only
model, a memory-only model takes into account semantic knowledge re-
trieval but not valuation. It shares the same component as IMC for con-
structing an internal choice set via memory retrieval, but during the second
stage, in which an item is chosen from the internal menu, no valuation in-
formation is incorporated. Instead, the decision-maker chooses randomly
from the options on the internal menu. We also considered a different, more
extreme instantiation of the accessibility model, called TTF, in which the
decision-maker always chooses the first item that comes to mind.

For the valuation-only and TTF models, the PIMC (i) predictions are ana-
lytically defined. For the memory-only model, we employed the same Monte
Carlo approach with N = 10,000 independent sample random walks on the
network, followed by a random drawing from each menu. Frequencies of
choices for different items were then used as an approximation of predicted
PIMC (i) from this model.

Mixture models. We also considered an alternative mechanism: that the
semantic knowledge structure and the mnemonic properties of an item may
compete with value-driven choices during IMC choices and thus explain the
differences between IMC and EMC choices. Under this alternative frame-
work, value and mnemonic accessibility are combined in an additive form,
which then drives IMC choices:

PIMC (i) = (1 − β)  *  eU(i)

∑je
U(j) + β  * 

A(i)
∑jA(j)

,

where A(i) denotes the mnemonic accessibility (in the Valuation + Accessi-
bility mixture model) or the likelihood that item i is the first item recalled
(i.e., the “top-of-mind” item; in the Valuation + TTF mixture model). Additional
procedures necessary to obtain the mixture parameter β and compare their
performance with the RCV model are described in SI Appendix, SI Methods.

fMRI Task. Each participant completed three tasks in a blocked design: an EMC
choice task, an IMC choice task, and a semantic fluency task (SI Appendix, Fig.
S9B), consistent with the behavioral study. The fMRI task consisted of 180

categories randomly assigned to one of the three conditions (EMC, IMC, and
semantic fluency), and no category was repeated across conditions. Trials of
the same condition were grouped into 12 miniblocks in a blocked design.
Participants were required to generate explicit verbal responses in the last
trial of each miniblock (20% of all trials), unpredictable to the participants
beforehand (see full details in SI Appendix, SI Methods).

fMRI Data Analysis.
Whole-brain univariate analysis. To identify the neural signature of IMC choices
and how it relates to the separable semantic retrieval and valuation systems
in the human brain, we constructed a general linear model (GLM) in SPM12
for each participant with a regressor for the initial information screen in-
dicating the task condition (5 s boxcar), a regressor for the verbal response
phases of all miniblocks (6 s boxcar), a regressor for the semantic fluency
questions, a regressor for the EMC choice questions, and a regressor for the
IMC choice questions (all boxcars time-locked to the entire durations of the
questions). Pairwise contrasts between the three task conditions were
specified and entered into group-level analysis (t tests with random effects).
Clusters defined by a voxel-level threshold of P < 0.001 (uncorrected) un-
derwent whole-brain correction for FWE at a significance level of P < 0.05,
corrected. Additional details regarding the GLM analysis are reported in SI
Appendix, SI Methods.
Functional connectivity analysis. In order to assess changes in functional con-
nectivity of the vmPFC, a key valuation region identified by numerous pre-
vious studies as well as the whole-brain univariate analysis for our own data
(IMC > fluency, Fig. 5A), we first constructed a spherical region-of-interest
(ROI) with a 6 mm radius centered on the peak voxel of the vmPFC cluster
from our univariate analysis (Montreal Neurological Institute coordinates [6,
38, −18]). This spherical ROI was then used as the seed for a generalized
psychophysiological interaction (gPPI) analysis with the following regressors:
1) the physiological regressor of the seed region, namely, the mean
blood-oxygen-level-dependent (BOLD) time courses extracted from the
vmPFC ROI; 2) the psychological regressors from our univariate GLM analysis
(i.e., the same regressors for the information screens, the verbal response
phases, the semantic fluency questions, the EMC choice questions, and the
IMC choice questions); and 3) PPI terms to represent the interaction between
the (deconvolved) physiological regressor and the psychological regressors.
We applied FWE cluster-level correction (with a P < 0.05 threshold) to acti-
vations defined by the initial threshold of P < 0.005 within volumes for which
we had an a priori hypothesis based on the univariate analysis above
(i.e., small-volume correction [SVC]; see full details in SI Appendix, SI Methods).

Data Availability. Anonymized behavioral data and scripts have been
deposited in Open Science Framework (https://osf.io/s5evn/?view_
only=6a2c1836aa004f9cbc732e87d300bc67) (62). The fMRI contrast maps
have been deposited in NeuroVault (https://neurovault.org/collections/
EQPVCIVC) (63).
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